STINE
STINE
German
English
Anmelden
Passwort vergessen
Startseite
Bewerbung
Bewerberaccount anlegen
FAQ
Passwort vergessen
Vorlesungsverzeichnis
Vorlesungsverzeichnis
SoSe 25
WiSe 24/25
SoSe 24
WiSe 23/24
Extracurriculare Veranstaltungen
SoSe 25
WiSe 24/25
SoSe 24
WiSe 23/24
Veranstaltungssuche
FAQ
Service
Anmeldephasen
Hilfreiche Links
Kommunikation
Schulungen
Anleitungen
News-Archiv
Über STiNE
Barrierefreiheit
Kontakt
24-204.21 Specification Issues in Quantitative Data Analysis [Vergleich]
Veranstaltungsdetails
Aktion
Lehrende:
Prof. Dr. Vera Eva Tröger
Veranstaltungsart:
Seminar
Anzeige im Stundenplan:
VRS1: Specification
Semesterwochenstunden:
2
Credits:
6,0
Unterrichtssprache:
Deutsch / Englisch
Min. | Max. Teilnehmerzahl:
10 | 20
Weitere Informationen:
Verwendbar in folgenden Studiengängen bzw. Modulen:
- M.A. Politikwissenschaft (FSB ab WiSe 2014/15): Modul Vergleichende und Regionalstudien (VRS 1)
- Masterstudiengänge der Fakultät WiSo: Wahlbereich
englische Übersetzung des Lehrveranstaltungstitels:
Kommentare/ Inhalte:
This course will cover various questions and specification issues in multivariate quantitative data analysis and is designed for students who already have training in basic statistics and knowledge of bivariate linear regression analysis. The course deals with different problems arising in applied data analysis when multiple violations of the basic regression assumptions occur. We will start by discussing the basic Gauss-Markov assumptions of OLS regression analysis, their violations and suitable solutions to such misspecifications, especially when they occur in conjunction. Thus, participants will learn how to deal with different types of heteroskedasticity, spatial correlation, serial correlation and dynamics as well as various kinds of heterogeneity. This discussion will include working with divers data such as cross-sectional, time-series, panel and pooled data. The course gives an overview of the problems arising from complex data structures and also provides techniques to control and account for specific complications. We will also look at problems arising from non-linear relationships, interactions effects and parameter instability. In addition, this course shows how to deal with specification problems such as complex error structures, different kinds of heterogeneity (e.g. unit and slope), dynamic specification issues, missing data, spatial heterogeneity and dependency. Furthermore, we will look at different data generating processes and adequate estimation procedures for e.g. binary choice and limited dependent variable models. Specifically, we will consider truncated and censored data as well as sample selection, instrumental variable approaches and seemingly unrelated as well as simultaneous equation models. The course combines a more theoretical introduction into different topics with practical analysis of diverse data sets using STATA. Students are encouraged to bring their own data sets and present their research projects and empirical analysis during the course.
Lernziel:
The course requires basic knowledge of inferential statistics, calculus and linear algebra and is designed to further develop the understanding of statistical problems arising from complex data generating processes in applied data analysis. The course mostly deals with questions of specification and model choice and is therefore a very practical course which should enable students to link their empirical models closer to their theoretical arguments and make model choices that are adequate for the data structure at hand. The taught material should help participants to solve their own estimation problems and increase the reliability and efficiency of statistical results. The course is targeted at social and political scientists as well as economists with average statistical skills with a strong interest in applied empirical research and data analysis. The focus lies on practical problems of applied data analysis
Vorgehen:
Each topic will be covered over 2 weeks with 2 sessions: the first session will cover theoretical aspects and the second session will deal with practical applications using real data and STATA
Information and material for this course will be provided via OpenOlat.
Literatur:
Clark, William Roberts, Matt Golder, and Sona Nadenichek Golder, 2017. Principles of Comparative Politics. 3rd edition. CQ Press.
Kellstedt, P.M. and Whitten, G.D., 2018. The fundamentals of political science research. Cambridge University Press.
Angrist, J.D. and Pischke, J.S., 2008. Mostly harmless econometrics: An empiricist's companion. Princeton university press.
Wooldridge, J.M., 2016. Introductory econometrics: A modern approach. Nelson Education.
Dougherty, Christopher 2002: Introduction to Econometrics, Second Edition, Oxford University Press.
Wooldridge, Jeffrey M. 2003: Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge.
Cameron, Colin A. and Pravin K. Trivedi 2009: Microeconometrics Using Stata, Stata Press.
Gould, William; Pitblado, Jeffrey and William Sribney 2006: Maximum Likelihood Estimation with Stata, Third Edition, Stata Press.
Long, Scott J. and Jeremy Freese 2006: Regression Models for Categorical Dependent Variables using Stata, Second Edition, Stata Press.ress.
Zusätzliche Hinweise zu Prüfungen:
Studienleistung: Take-Home-Exam
Bewertungsschema: benotet (RPO)
Übersicht der Kurstermine
1
2
3
4
5
6
7
8
9
10
11
12
Lehrende
Prof. Dr. Vera Eva Tröger
Termine
Datum
Von
Bis
Raum
Lehrende
Termine
1
Datum
Do, 11. Apr. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
2
Datum
Do, 18. Apr. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
3
Datum
Do, 25. Apr. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
4
Datum
Do, 2. Mai 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
5
Datum
Do, 16. Mai 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
6
Datum
Do, 30. Mai 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
7
Datum
Do, 6. Jun. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
8
Datum
Do, 13. Jun. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
9
Datum
Do, 20. Jun. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
10
Datum
Do, 27. Jun. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
11
Datum
Do, 4. Jul. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
12
Datum
Do, 11. Jul. 2024
Bis
10:15
Bis
11:45
Raum
WiWi 0080
Lehrende
Prof. Dr. Vera Eva Tröger
Prüfungen im Rahmen von Modulen
Modul(Startsemester)/ Kurs
Prüfung
Datum
Lehrende
Bestehenspflicht
24-200.PEP-C Elective Political Science C (SoSe 19) / 24-200.PEP3 Specification Issues in Quantitative Data Analysis [Vergleich]
6 Take-Home Exam
k.Terminbuchung
Prof. Dr. Vera Eva Tröger
Ja
24-200.PEP-D Elective Political Science D (SoSe 19) / 24-200.PEP4 Specification Issues in Quantitative Data Analysis [Vergleich]
6 Take-Home Exam
k.Terminbuchung
Prof. Dr. Vera Eva Tröger
Ja
24-204-VRS1-V Vergleichende und Regionalstudien (VRS 1 - V) (WiSe 14/15) / 24-204.11 Specification Issues in Quantitative Data Analysis [Vergleich]
20 Studienleistung
k.Terminbuchung
Prof. Dr. Vera Eva Tröger
Ja
20 Studienleistung
k.Terminbuchung
Prof. Dr. Vera Eva Tröger
Ja
Veranstaltungseigene Prüfungen
Beschreibung
Datum
Lehrende
Pflicht
1.
Studienleistung
k.Terminbuchung
Ja